

On-the-job training workshop "Development of similarity maps to promote selected SLM packages in Central Asia"

September 16-20, 2014 Bishkek, Kyrgyzstan

On-the-job training workshop "Development of similarity maps to promote selected SLM packages in Central Asia"

MINUTES

Date: September 16-18, 2014 **Venue:** Conference Hall, Hotel Ak-Keme, Bishkek, Kyrgyzstan.

Knowledge Management project in CACILM Phase II in collaboration with the Ministry of Agriculture and Melioration of Kyrgyz Republic organized on-the-job training workshop on "Development of similarity maps to promote selected SLM packages in Central Asia".

The objective of this workshop was to share the methodology and results of the similarity analysis conducted by ICARDA – IWLMP team, identify data collection constraints, obtain the participant reflection on the results and expert based verification of similarity maps, map generation and formulation of recommended approaches, and agree on standard similarity criteria for each target agro-ecosystem.

Purpose and objectives:

- Presentation and discussion of data collection and similarity analysis results at regional level;
- Obtain participants reflection of the similarity results based on their national experience and preliminary comparison with data;
- Identification of the needed analysis at national level;
- Discuss and endorse standard similarity criteria for the four agro-ecosystems (irrigated, mountain, rainfed, and rangeland);
- Propose to establish CACs database for collecting, sharing, and archiving different data such as data used in the similarity analysis as well as the SLM technologies and approaches.

Day 1. September 16, 2014

The event was opened by Dr. Malik Bekenov, representative of the Ministry of Agriculture and Melioration, who greeted all participants of the workshop and wished a successful work. Dr. Feras Ziadat introduced the main purpose of this training workshop - to generate similarity maps (based on climate, soil texture, etc.) to apply new/existing technologies and approaches to other regions of Central Asia. There are four agro-ecosystems (irrigated, rainfed, rangeland and mountain) that were analyzed.

Dr. Azimbai Otarov said that these type of workshops are necessary not only at regional level, but also at national level. Moreover most of maps outdated in CA (not updated since Soviet Union period). Currently international organizations, donor community, and government are paying more attention on mapping of soil conditions (degradation, soil salinity, etc.).

Mrs. Mira Haddad (Research Assistant, ICARDA) presented data collection and similarity analysis results at regional level. She mentioned that different data sources could be used for similarity analysis. Text further below shows some examples of maps and figures presented during the training. Full report of the similarity analysis will be presented separately after receiving comments.

Dr. Feras noted that the data used from above mentioned sources is good for the preliminary results. Similarity analysis requires expert's feedback and reflection. In addition participants of the workshop brought the data on different agro-ecosystems.

Most of the data available is in raster format with different resolutions, and to conduct the similarity analysis the layers should be in the same pixel size (Table 2).

Mrs. Mira explained the Digital Elevation Model (DEM). The DEM was downloaded from the CGIAR CSI website. The CGIAR CSI geo-portal provides shuttle radar topography mission (SRTM) 90 m digital elevation data for the entire world. This data is provided in an effort to promote the use of geospatial science and applications for sustainable development and resource conservation in the developing world. The SRTM 90 m DEM's have a resolution of 90 m at the equator, and are provided in mosaicked 5° x 5° tiles for easy download and use. These are available in both ArcInfo ASCII and GeoTiff format to facilitate their ease of use in a variety of image processing and GIS applications.

Table 1: Data sources	
Criteria	

Criteria	Data Sources	
Altitude, m and Slope, degree	The Consultative Group on International Agricultural Research (CGIAR), Consortium for Spatial Information (CGIAR-CSI), SRTM 90 Digital Elevation Data http://srtm.csi.cgiar.org/	
Degradation degree	Food and Agriculture Organization of the United Nation (FAO), The Land Degradation Assessment in Drylands project (LADA), Global Land Degradation Information System (GLADIS) - Simplified output, Classes of land degradation <u>http://www.fao.org/nr/lada/gladis/glad_ind/</u>	
Land use	Food and Agriculture Organization of the United Nation (FAO), The Land Degradation Assessment in Drylands project (LADA), Global Land Degradation Information System (GLADIS), Land use systems of the world - v1.1 http://www.fao.org/nr/lada/gladis/lus/ Food and Agriculture Organization of the United Nation (FAO), Effective Soil Depth (cm) Map, Class 10 http://data.fao.org/map?entryId=c3bfc940-bdc3-11db-a0f6-000d939bc5d8	
Livestock density per ha	Food and Agriculture Organization of the United Nation (FAO), The Land Degradation Assessment in Drylands project (LADA), GLADIS Global Land Degradation Information System - Beta version Livestock density http://www.fao.org/nr/lada/gladis/lus/	
Precipitation	WorldClim – Global Climate Data http://www.worldclim.org/download	
Soil Data Soil (texture), clay content, % Soil denth cm	Harmonized World Soil Database (HWSD) - (version 1.2) http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/	
Soil salinity, %	http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116	
Water availability/source	World Wide Fund for Nature (WWF), Conservation Science Data and Tools, Global Lakes and Wetlands Database	
	Http://worldwildlife.org/pages/global-lakes-and-wetlands-database	
	Food and Agriculture Organization of the United Nation (FAO), Global Water Information System AQUASTAT	
	Http://www.fao.org/nr/water/aquastat/main/index.stm	
	Economic and Social Research Institute (ESRI); World Water Bodies and World Linear Water	
	http://www.arcgis.com/home/item.html?id=e750071279bf450cbd510454a80f2e63	
	and http://www.arcgis.com/home/item.html?id=273980c20bc74f94ac96c7892ec15aff	
Watering points/ha	data not available yet	

The DEM used to generate the altitude (m) which is needed for the mountain agro-ecosystem and the slope degree for the four agro-ecosystem, the DEM has a spatial reference of (GCS_WGS_1984) the raster was re-projected to a geographic coordinate system (WGS_1984_UTM_Zone_41N) to create the slope degrees for Central Asian countries (Figure 1).

Table 2: Raster data resoultions

Criteria	Data Source/s	Raster resolution Cell size(x, y)
Altitude, m and Slope, degree	The Consultative Group on International Agricultural Research (CGIAR), Consortium for Spatial Information (CGIAR-CSI), SRTM 90 Digital Elevation Data <u>http://srtm.csi.cgiar.org/</u>	(90, 90) m
Degradation degree	Food and Agriculture Organization of the United Nation (FAO), The Land Degradation Assessment in Drylands project (LADA), GLADIS Global Land Degradation Information System - Beta version <u>http://www.fao.org/nr/lada/gladis/glad_ind/</u>	(9, 9) Km
Land use	Food and Agriculture Organization of the United Nation (FAO), The Land Degradation Assessment in Drylands project (LADA), GLADIS Global Land Degradation Information System - Beta version, Land use systems <u>http://www.fao.org/nr/lada/gladis/lus/</u>	(9, 9) Km
Livestock density per ha	Food and Agriculture Organization of the United Nation (FAO), The Land Degradation Assessment in Drylands project (LADA), GLADIS Global Land Degradation Information System - Beta version Livestock density <u>http://www.fao.org/nr/lada/gladis/lus/</u>	(9, 9) Km
Precipitation	WorldClim – Global Climate Data http://www.worldclim.org/download	(1, 1) Km
Soil data: texture (clay content %), salinity %	Harmonized World Soil Database (HWSD) - (version 1.2) http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/	(1, 1) Km

Figure 1. DEM and slope in CACs

Ms. Mira Haddad presented the results for each agro-ecosystem in CA and participants of the workshop discussed the results based on their national experience and comparison with the data. Dr. Azimbay Otarov mentioned that irrigated agro-ecosystem in Kazakhstan is located only in basins of the Syrdarya river and Almaty region, and South of Kazakhstan. Most of the lands are rainfed (north part of Kazakhstan). Also participants gave their feedbacks on the results.

Land-use types for each agro-ecosystem were presented, data used to extract required information is presented in Table 3.

Average annual precipitation was also used in the mapping. Data from WorldClim websites was downloaded for two sections that cover Central Asian countries area. The used data is from the current conditions section which is interpolations of observed data, representative of 1950-2000. Data were generated through interpolation of average monthly climate data from weather stations. Data downloaded as a set of 12 raster for each section, a new raster created that represent the average yearly precipitations. Then the two sections where mosaicked and clipped into Central Asian countries area (Figure 2).

Agro- ecosystem	Land use criteria	Data source
Irrigated	Irrigated land	Food and Agriculture Organization of the United Nation (FAO), The Land Degradation Assessment in Drylands project (LADA), Global Land Degradation Information System (GLADIS), Land use systems of the world - v1.1, irrigation intensity. <u>http://www.fao.org/nr/lada/gladis/lus/</u>
Rainfed	Cropland	Food and Agriculture Organization of the United Nation (FAO), The Land Degradation Assessment in Drylands project (LADA), Global Land Degradation Information System (GLADIS), Land use systems of the world - v1.1, dominant crops <u>http://www.fao.org/nr/lada/gladis/lus/</u>
Mountain	Exclude inconvenient areas (rocks, gullies etc.)	Food and Agriculture Organization (FAO), Effective Soil Depth (cm) Map, Class 10 <u>http://data.fao.org/map?entryId=c3bfc940-bdc3-11db-a0f6-000d939bc5d8</u>
Rangelands	Rangelands, pasture	Food and Agriculture Organization of the United Nation (FAO), The Land Degradation Assessment in Drylands project (LADA), Global Land Degradation Information System (GLADIS), Land use systems of the world - v1.1, land use systems <u>http://www.fao.org/nr/lada/gladis/lus/</u>

Table 3: Sources of land use data

Figure 2. Precipitation distribution and histogram

Day 2. September 17, 2014

The following criteria were used to map the areas similar to the **irrigated** agro-ecosystem. The source of each criterion is indicated in the table below. Irrigated agro-ecosystem criteria included the availability of water sources; the result of the similarity analysis shows the irrigated areas close to the perennial water source. By overlaying the land-use, slope degree, soil texture, and soil salinity layers the areas similar to irrigated agro-ecosystem in Central Asia is shown below in Figure 3.

Land use	Irrigated land
Slope, degree	0-5
Water availability/source	Sufficient
Soil (texture), clay content, %	10-75 physical clay
Soil salinity, %	Non saline soil: Electrical Conductivity < 8

The following criteria were used to map the areas similar to the **rainfed** agro-ecosystem. The source of each criterion is indicated in the table below.

Rainfed agro-ecosystem Similarity criter		
Precipitation	300-600	
Slope, degree	<7	
Land use	Cropland	
Soil (texture), clay content, %	20-75 physical clay	

By overlaying the above prepared layers the areas similar to rainfed agro-ecosystem in Central Asia is shown below in Figure 4.

Figure 3: Area similar to irrigated agro-ecosystem

The following criteria were used to map the areas similar to the mountain agro-ecosystem. The source of each criterion is indicated in the table below.

Mountain agro-Ecosystem	Similarity criteria
Slope, degree	>7
Precipitation	>500
Altitude, m	>800
Land use	exclude inconvinient areas (rocks, gullies etc.)
Soil depth, cm	>50

By overlaying the above prepared layers the areas similar to mountain agro-ecosystem in Central Asia is shown below in Figure 5.

Rangelands agro-ecosystem	Similarity criteria
Land use	rangelands, pasture
Slope, degree	>12
Precipitation	
Degradation degree	Areas with weak, medium to strong degradation as well as the Bareland areas
Livestock density per ha	Areas with high and moderate livestock density

Rangelands agro-ecosystem

By overlaying the above prepared layers the areas similar to rangeland agro-ecosystem in Central Asia is shown below in Figure 6.

Figure 5. Area similar to mountain agro-ecosystem

Figure 6. Area similar to rangeland agro-ecosystem with slope degree > 12

Further similarity analysis results were demonstrated. The maps below show the results of the similarity analysis for the four agro-ecosystems.

Figure 7: Simialr areas for the four agro-ecosystem (Option -1)

Figure 8: Similar areas for the four agro-ecosystem (Option -2)

Day 3. September 18, 2014

Ms. Olga Matushkina presented maps of rainfed agroecosystem in Kyrgyzstan. It was noted that it is better to use a local data in order to minimize inaccuracies. Further participants of the workshop practiced how to use the ArcGIS software and derive data for different agro-ecosystems.

Participants expressed that this on-the-job training workshop was very productive and informative. Knowledge and tools which were demonstrated would help them to understand similarity of ecosystems in Central Asia. The use of ArcGIS software on similarity mapping provided some additional information on important factors for agro-ecosytems.

The participants of the workshop agreed that they will find updated maps on four agro-ecosystems and converted them to ArcGIS layers and provide them to ICARDA-CAC office. Further on Ms. Mira Haddad will analyze and fine-tune the previous maps.

On-the-job training workshop "Development of similarity maps to promote selected SLM packages in Central Asia"

September 16-18, 2014

Bishkek, Kyrgyzstan

AGENDA

Day-1, Tuesday, September 16, 2014

Presentation, discussion and preliminary verification of similarity results

	Welcome and Opening	Dr. G. Elemanova
08:30 - 09:00	Introduction of participants	Dr. F. Ziadat
	Introduction to the training course and expected outcomes	Dr. A. Akramkhanov
00:00 10:20	Presentation and discussion of data collection and similarity	Dr. F. Ziadat
09:00 - 10:50	analysis results at regional level (Central Asia)	Mrs. M. Haddad
10:30 - 11:00	Coffee break	
11:00 - 12:30	Participants reflection of the similarity results based on their national experience and preliminary comparison with data	All participants
12:30 - 13:30	Lunch	
13:30 - 15:00	Discussion and fine tuning of similarity criteria	All participants

Day-2, Wednesday, September 17, 2014

Spatial verification of similarity results using data from participating countries

09:00 - 10:30	GIS-based verification of similarity maps using data from	Dr. F. Ziadat
	different countries	Mrs. M. Haddad
10:30 - 11:00	Coffee break	
11:00 - 12:30	Maps generation and formulation of recommended approaches	Dr. F. Ziadat
		Mrs. M. Haddad
12:30 - 13:30	Lunch	
13:30 - 15:00	Identification of the needed analysis at national level	Dr. A. Akramkhanov
		Dr. F. Ziadat

Day-3, Thursday, September 18, 2014

Presentation and comparative analysis of similarity results from the three benchmarks

09:00 - 10:30	Introduction, deriving slope map for the area and preparing	Dr. F. Ziadat
	field observations for analysis	Mrs. M. Haddad
10:30 - 11:00	Coffee break	
11:00 - 12:30	Discuss and endorse standard similarity criteria for the three	All participants
	benchmarks (irrigated, rainfed, and rangeland)	All participants
12:30 - 13:30	Lunch	
13:30 - 15:00	What is next – what needs to be done at Benchmark, National	All participants
	and Regional levels, roles and responsibilities of all participant	An participants

On-the-job training workshop "Development of similarity maps to promote selected SLM packages in Central Asia"

September 16-18, 2014

Bishkek, Kyrgyzstan

LIST OF PARTICIPANTS

#	Full Name	Organization	Country	Position	Contacts
1	Mr. Saken Duisekov	Kazakh RI of Soil Science and Agrochemistry	Kazakhstan	Manager-meliorator	Tel.: +7 775 605-70-60; nurzhanuly2014@mail.ru
2	Dr. Azimbay Otarov	Kazakh RI of Soil Science and Agrochemistry	Kazakhstan	Head of Unit	Tel.: +7 727 245-54-74; azimbay@bk.ru
3	Dr. Gulnar Toxeitova	Kazakh RI of Soil Science and Agrochemistry	Kazakhstan	Head of Unit	Tel.: +7 727 269-47-45; tokseitova-2011@mail.ru
4	Dr. Turusbek Ismailov	Kyrgyz RI of Soil Science	Kyrgyz Republic	Senior Researcher	Tel.: +996 558 22-08-57;
5	Dr. Olga Matushkina	Kyrgyz RI of Irrigation	Kyrgyz Republic	Head of GIS Laboratory - Systems and Databases	Tel.: +996 321 54-11-83; olga or@mail.ru
6	Dr. Myrzabek Batyrkanov	Kyrgyz National Agrarian University	Kyrgyz Republic	Dean of faculty	Tel: +996 312 59-54-21; batyrkanov_myrzabek@mail. ru
7	Mr. Noilsho Rakhdorov	Design and Research Institute "FAZO"	Tajikistan	Researcher	Tel.:+992 935 81-62-50; nrahdorov@gmail.com
8	Mr. Bakhtiyor Khudoykulov	RI of Soil Sciences, TAAS	Tajikistan	Senior Researcher	Tel.: +992 918 58-86-61; bakht85@gmail.com
9	Ms. Inora Abdurakhmanova	State Project Research Institute of Engineering Studies in Construction, Geoinformatics and Urban Cadastre	Uzbekistan	Technician/Translator	Tel.: +998 71 273-04-81 <u>klein_girl@mail.ru</u>
10	Mr. Nazimkhon Kalandarov	State Research Institute of Soil Science and Agrochemistry	Uzbekistan	Junior Researcher	Tel.: +998 71 278-41-05 nazim 8417@mail.ru
11	Mr. Aleksandr Li	KRASS/Liceum #2	Uzbekistan	GIS specialist	Tel.: +998 90-713 43 68; <u>li_sasha@mail.ru</u>
12	Ms. Shakhodat Bobokulova	ICARDA-CAC	Uzbekistan	Interpreter	Tel.: +998-71-237-21-69; S.Bobokulova@cgiar.org
13	Mr. Timur Ibragimov	ICARDA-CAC	Uzbekistan	Consultant	Tel.: +998-71-237-21-69; tibragimov@rambler.ru
14	Ms. Mira Haddad	ICARDA	Jordan	Research Assistant	Tel.: +962-6-590-31-20; M.Haddad@cgiar.org
15	Dr. Akmal Akramkhanov	ICARDA-CAC	Uzbekistan	Project coordinator, CACILM-KM phase II	Tel: +998-71-237-21-69; a.akramkhanov@cgiar.org
16	Dr. Feras Ziadat	ICARDA	Jordan	Soil conservation / Land management specialist	Tel.: +962 06 533-12-37; <u>f.ziadat@cgiar.org</u>