











## Strengthening Biosaline Agriculture Research and Development for rehabilitation of salt-affected lands in Central Asia and Caucasus

Kristina Toderich & Shoaib Ismail

Annual Steering Committee Meeting, September 4-6, 2012 Issyk-Kul, Kyrgyzstan

# Work & Research of ICBA IN CA region (2011-2012):

- Demonstrate the value of saline water and lands (marginal) resources for the different production systems
- To cultivate environmentally and economically useful plants for region
- Transfer the results to national research services and communities
- Capacity building of national manpower

| Projects                                                                                                                                                                                                | Country                                  | Partners                                                                                                                                                                                                                                             | Main Objective                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sorghum and Pearl Millet for<br>Crop Diversification,<br>Improved Crop-Livestock<br>Productivity and Farmers<br>Livelihood in Central Asia                                                              | Uzbekistan,<br>Tajikistan,<br>Kazakhstan | Institute of Karakul Sheep Breeding and Desert Ecology research; Uzbek Corn Station; Gulistan State University; Karakalpakstan Branch of Institute of Rise Production; Tajik Academy of Agricultural Research Kyzylorda Institute of Rice Production | Develop crop management<br>technologies for economic and<br>sustainable livestock production<br>systems                                                                                            |
| Improving Livelihoods of<br>Rural Communities under<br>Saline Desert Environments<br>in Turkmenistan                                                                                                    | Turkmenistan                             | National Institute of Flora and Fauna<br>Ministry of Nature Protection of<br>Turkmenistan                                                                                                                                                            | Integrated agri-silvi-pastoral systems to adapt the climate change and improve farmers' income in the desert areas in Turkmenistan                                                                 |
| Web-based platforms of water quality of Zarafshan River basin integrated with promotion of biosaline technologies for utilization of marginal resources as part of a climate change adaptation strategy | Uzbekistan                               | Samarqand State University;<br>Karakul Sheep Breeding Institute;<br>Yamanashi University (Japan)                                                                                                                                                     | Develop data mining and managing system for collected dataset. Provide integrated data to the interested communities.                                                                              |
| Utilization of low quality water for halophytic forage and renewable energy production                                                                                                                  | Uzbekistan                               | Nevada University (USA); Krass;<br>National University of Uzbekistan;<br>Academy of Sciences of Uzbekistan                                                                                                                                           | Appropriate technologies of cultivation of halophytes in single or mixed in Uzbekistan; to produce sufficient amount of plant biomass for biogas production; desalination and improvement of lands |





### International Centre for Biosaline Agriculture (ICBA)

in collaboration with







**Ongoing Project:** Sorghum and Pearl Millet for Crop Diversification, Improved Crop-Livestock Productivity and Farmers Livelihood in Central Asia (2011-2014).

#### Main Goal

- to disseminate high-yielding, salinity-tolerant sorghum and pearl millet lines in salinity-affected and marginal environments (CA)
- to develop crop management technologies for economic and sustainable livestock production systems

NARS countries: *Uzbekistan* (3 sites); *Kazakhstan* (3 sites); *Karakalpakstan* (2 sites); *Tajikistan* (2 sites)

## Findings:

- International collection nursery were established: more than 78 improved lines and varieties along with local collection
- Pearl millet Sudan Pop III, Guerinian-4, Raj 171, IP 6107, 6112, 19586, 22269, HHVBC Tall, ICMV 7704, MC94C2;
- Sorghum ICSV 93046, ICSSH 58, SPV 1411, ICSR 93034, ICSV 25280, S 35, Sugar Graze
- 30% higher dry fodder and 25% consistently higher yield with superior quality and disease resistance over the local checks

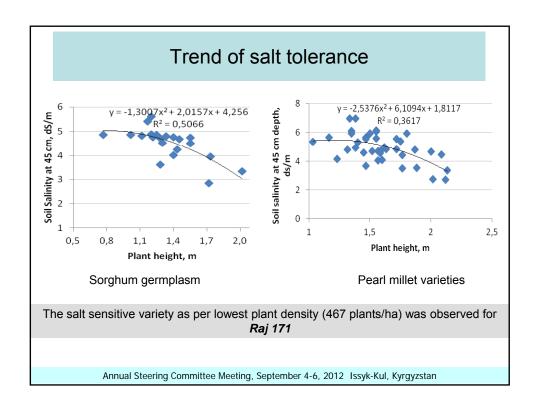






Annual Steering Committee Meeting, September 4-6, 2012 Issyk-Kul, Kyrgyzstan

## Lead to Success in local Breeding Program


**HASHAKI 1**" selected from Self-pollinated population line HHVBC Tall from ICRISAT was recognized promising by SVTC in Uzbekistan.

#### **Outputs**

- •sorghum cultivar early maturing (64-72 days):
- •green biomass 38.0 45.0 t/ha;
- •grain yield- 3.0t/ha.

New local variety is resistant to moderate soil salinity and low quality water with grain yield 2.96 t/ha.





## Nutritional value of forage and grain of selected populations and varieties for livestock feeding

| Investigated varieties/improved lines | Crude<br>cellulose (%) | Crude<br>protein (%) | Carbohydrates (%) | Fat (%) | Carotene<br>(mg/kg) | Ash<br>(%) |
|---------------------------------------|------------------------|----------------------|-------------------|---------|---------------------|------------|
| S 35                                  | 24,3                   | 19,5                 | 5,4               | 1,7     | 19,1                | 7,8        |
| ICSV 25280                            | 23,8                   | 18,7                 | 6,8               | 1,4     | 18,5                | 7,3        |
| ICSV 25275                            | 23,7                   | 21,5                 | 5,3               | 1,9     | 22,1                | 7,8        |
| ICSV 112                              | 23,4                   | 21,5                 | 5,9               | 2,1     | 20,5                | 7,3        |
| SPV 1411                              | 25,9                   | 22,3                 | 6,8               | 1,9     | 20,6                | 8,8        |
| ICSSH 28                              | 27,1                   | 25,2                 | 9,4               | 2,2     | 16,9                | 9          |
| ICSV 93046                            | 21,3                   | 19,9                 | 6,7               | 2,3     | 21,5                | 5,9        |
| ICSR 93034                            | 24,1                   | 18,6                 | 6,9               | 2,7     | 20,8                | 6,9        |
| ICSV 25274                            | 21,2                   | 18,7                 | 7,2               | 2,4     | 22,5                | 6,8        |
| ICSSH 58                              | 28,4                   | 22,4                 | 10,4              | 2,6     | 17,8                | 9,1        |
| ICSV 745                              | 20,8                   | 18,8                 | 7,9               | 2,1     | 23,4                | 7,5        |
| Control                               | 23,1                   | 19,8                 | 7,8               | 2       | 18                  | 6,6        |

<sup>\*</sup> Nutritional value of forage (calculated as per DM) of different *sorghum varieties* at the flowering stage at Kyzylorda Farm, Kazakhstan (Average for 2011-2012)

## Seed Multiplication Trials (on-farm level)

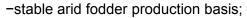
Sites trial of about 0.3 ha organized in:

- Kyzylkesek and Zangyota sites in Uzbekistan;
- Abay farm southern Kazahstan;
- Gafurov Farm in Tajikistan.

SM & PM showing best results were used



**Recovery:** Seeds can be specially produced by separate or cluster farmers of nearby villages on a remunerative price to recover the cost of seed production, plus 30-50% profit.


**28 farmer** were identified and invited to form a network in Tajikistan.

**Social networks** will be created in Uzbekistan and Kazakhstan.

Annual Steering Committee Meeting, September 4-6, 2012 Issyk-Kul, Kyrgyzstan

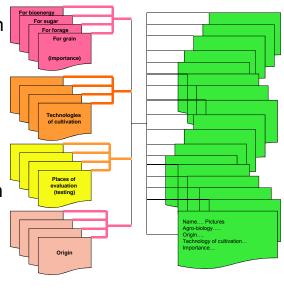
### Socio-Economic Assessment

Alternative more profitable livelihoods strategies creation were suggested after interviews and analyzing to:



- -cultivation of high yield;
- -salt, drought and heat tolerant crops;

Pearl millet a high nutritive-value forage crop, popular among farmers:


- · High biomass;
- Tillering ability;
- High digestibility;
- ·Low lignin;
- ·High metabolizable energy;
- High crude protein.





### DATABASE for SM & PM (for Central Asian region)

- A. Data collection on green biomass and grain yield from trial (2012)
- B. Data collection from earlier trial (2006-2011)
- C. Available Data on sorghum and pearl millet (before 2006)



Annual Steering Committee Meeting, September 4-6, 2012 Issyk-Kul, Kyrgyzstan



## International Centre for Biosaline Agriculture (ICBA)

in collaboration with

Institute of Desert, Flora and Fauna (IDFF)
Ministry of Nature Protection of Turkmenistan

Ongoing Project: "Improving Livelihoods of Rural Communities under Saline Desert Environments in Turkmenistan"

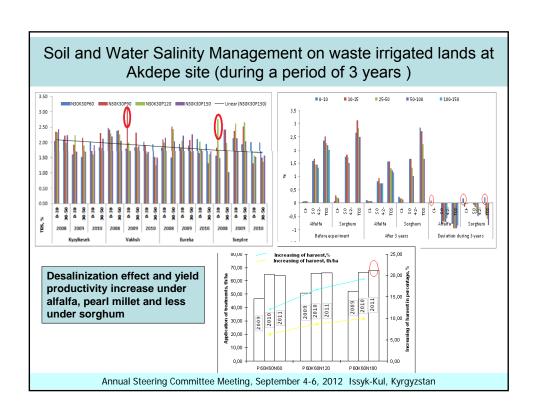
(Development of sustainable water, rangelands and livestock management) 2010-2012

#### Main Goal

- Improving productivity of marginal lands using low quality water resources for irrigation;
- Developing integrated agri-silvi-pastoral systems to adapt the climate change and improve farmers' income in the desert areas in Turkmenistan

Target area: **Dashauz** (northern); **Ashgabat** (southern); salt affected & degraded rangelands of Karakum Desert Turkmenistan

# Reclamation of Takyrs Saline Soil (Karakum Desert, near Ashgabat, November 2010)


Seedlings production of *Haloxylon* and *Pistachio vera* in the field;

Irrigation with ground mineralized water – as single source of water available in the Karakum sandy desert







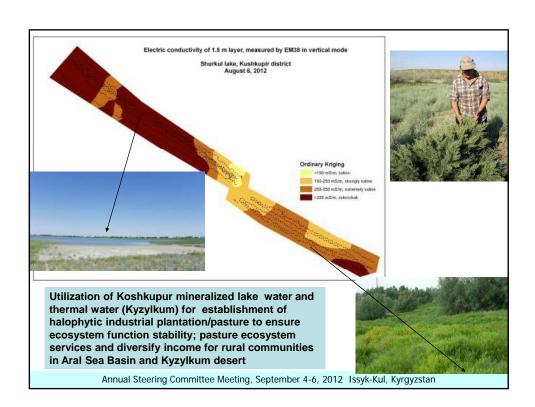




## International Centre for Biosaline Agriculture (ICBA)

in collaboration with

University of Nevada (USA)


**New Project:** "Utilization of low quality water for halophytic forage and renewable energy production" 2012-2014

#### Funded by USAID

#### Main Goal:

- Appropriate technologies of cultivation of halophytes in single or mixed in Uzbekistan
- to produce sufficient amount of plant biomass for biogas production
- desalination and improvement of lands

Target area: **Aral Sea Basin** (Khoresm region and Karakata Saline Depression), Central Kyzylkum Uzbekistan



#### **Total mineral content**



## Halophytes contain very high concentrations of mineral compounds: 40-50% of DM

| Plant species       | Water content<br>% | DM,<br>%<br>Dry matter content | Total mineral<br>content,<br>%<br>from fresh weight | Total mineral content, % from dry weight |
|---------------------|--------------------|--------------------------------|-----------------------------------------------------|------------------------------------------|
| Kalidium caspicum   | 76,96              | 23,04                          | 9,47                                                | 42.84 <u>+</u> 2.48                      |
| Climacoptera lanata | 78,52              | 21,48                          | 10,09                                               | 51.62 <u>+</u> 6.6                       |
| Salicornia europaea | 83,02              | 16,98                          | 6,75                                                | 38,64 ± 1.64                             |
| Panicum coloratum   | -                  | -                              | -                                                   | 5.01 + 0.15                              |
|                     |                    |                                | Ash,<br>% on FM <sup>[1]</sup> basis                | Ash,<br>% on DM <sup>[2]</sup> basis     |

III FM – fresh matter

Annual Steering Committee Meeting, September 4-6, 2012 Issyk-Kul, Kyrgyzstan

## **Summary**

- Salinity in CAC is mainly related to drainage and on-farm management of water table
- Incentives for farmers and agro-pastoralists to invest in increasing productivity of marginal lands and to establish small alliance (cooperatives) and investments in market outlets are very important
- Creating institutional arrangements and policy interventions to increase community participation in arid biosaline conservation agriculture on marginal lands is critical.

<sup>2</sup> DM – dry matter

#### **ICBA FUTURE PROSPECTS**

1. Linkages (CRPs) and activities in CA region CRP1- Developing technology, policy, and institutional innovations to improve livelihoods for highly vulnerable populations

CRP5- Durable solutions for water scarcity and land degradation

**CRP6- Agroforestry** 

2. Strengthening International & National Research and Partnerships (NIFA, GIZ, EU,,Russian Initiative; countries National Programs

3. CAPACITY BUILDING & KNOWLEDGE SHARING

Annual Steering Committee Meeting, September 4-6, 2012 Issyk-Kul, Kyrgyzstan





## Thank you for attention!

Toderich Kristina

e-mail: k.toderich@cgiar.org

Shoaib Ismail

e-mail: s.ismail@biosaline.org.ae